Sabtu, 27 Oktober 2012

Notasi dan Operasi


Dalam matematika, bilangan kompleks adalah bilangan yang berbentuk.
 a + bi \,
Dimana a dan b adalah bilangan rill, dan i adalah bilangan imaginer tertentu yang mempunyai sifat i 2 = −1. Bilangan riil a disebut juga bagian riil dari bilangan kompleks, dan bilangan real b disebut bagian imaginer. Jika pada suatu bilangan kompleks, nilai b adalah 0, maka bilangan kompleks tersebut menjadi sama dengan bilangan real a.
Sebagai contoh, 3 + 2i adalah bilangan kompleks dengan bagian riil 3 dan bagian imajiner 2.
Notasi dan operasi
Himpunan bilangan kompleks umumnya dinotasikan dengan C, atau \mathbb{C}. Bilangan real, R, dapat dinyatakan sebagai bagian dari himpunan C dengan menyatakan setiap bilangan real sebagai bilangan kompleks: a = a + 0i.
Bilangan kompleks dapat ditambah, dikurang, dan dikali dengan menggunakan sifat-sifat aljabar seperti asosiatif, komutatif, dan distributif, dan dengan persamaan i 2 = −1:
(a + bi) + (c + di) = (a+c) + (b+d)i
(a + bi) − (c + di) = (ac) + (bd)i
(a + bi)(c + di) = ac + bci + adi + bd i 2 = (acbd) + (bc+ad)i
 Definisi
Definisi formal bilangan kompleks adalah sepasang bilangan real (a, b) dengan operasi sebagai berikut:
  •  ( a , b ) + ( c , d ) = ( a + c , b + d ) \,
  •  ( a , b ) \cdot ( c , d ) = ( ac - bd , bc + ad ). \,
Dengan definisi diatas, bilangan-bilangan kompleks yang ada membentuk suatu himpunan bilangan kompleks yang dinotasikan dengan C.
Karena bilangan kompleks a + bi merupakan spesifikasi unik yang berdasarkan sepasang bilangan riil (a, b), bilangan kompleks mempunyai hubungan korespondensi satu-satu dengan titik-titik pada satu bidang yang dinamakan bidang kompleks.
Bilangan riil a dapat disebut juga dengan bilangan kompleks (a, 0), dan dengan cara ini, himpunan bilangan riil R menjadi bagian dari himpunan bilangan kompleks C.
Dalam C, berlaku sebagai berikut:
  • identitas penjumlahan ("nol"): (0, 0)
  • identitas perkalian ("satu"): (1, 0)
  • invers penjumlahan (a,b): (−a, −b)
  • invers perkalian (reciprocal) bukan nol (a, b): \left({a\over a^2+b^2},{-b\over a^2+b^2}\right).

Notasi
Bentuk Penjumlahan
Bilangan kompleks pada umumnya dinyatakan sebagai penjumlahan dua suku, dengan suku pertama adalah bilangan riil, dan suku kedua adalah bilangan imajiner.
a + bi

Bentuk Polar
Dengan menganggap bahwa:
r = \sqrt {a^2 + b^2}
dan
\theta = \arctan(\frac{b}{a})
maka
a + bi = r(cos θ + isin θ)
Untuk mempersingkat penulisan, bentuk r(cos θ + isin θ) juga sering ditulis sebagai r \, cis \theta.
Bentuk Eksponen
Bentuk lain adalah bentuk eksponen, yaitu:
reiθ = r(cos θ + isin θ)




Bidang kompleks

Bilangan kompleks dapat divisualisasikan sebagai titik atau vektor posisi pada sistem koordinat dua dimensi yang dinamakan bidang kompleks atau Diagram Argand.
Koordinat Cartesian bilangan kompleks adalah bagian riil x dan bagian imajiner y, sedangkan koordinat sirkularnya adalah r = |z|, yang disebut modulus, dan φ = arg(z), yang disebut juga argumen kompleks dari z (Format ini disebut format mod-arg). Dikombinasikan dengan Rumus Euler, dapat diperoleh:
 z = x + iy = r (\cos \phi + i\sin \phi ) = r e^{i \phi}. \,
Kadang-kadang, notasi r cis φ dapat juga ditemui.
Perlu diperhatikan bahwa argumen kompleks adalah unik modulo 2π, jadi, jika terdapat dua nilai argumen kompleks yang berbeda sebanyak kelipatan bilangan bulat dari 2π, kedua argumen kompleks tersebut adalah sama (ekivalen).
Dengan menggunakan identitas trigonometri dasar, dapat diperoleh:
r_1 e^{i\phi_1} \cdot r_2 e^{i\phi_2} 
= r_1 r_2 e^{i(\phi_1 + \phi_2)} \,
dan
\frac{r_1 e^{i\phi_1}}
{r_2 e^{i\phi_2}}
= \frac{r_1}{r_2} e^{i (\phi_1 - \phi_2)}. \,
Penjumlahan dua bilangan kompleks sama seperti penjumlahan vektor dari dua vektor, dan perkalian dengan bilangan kompleks dapat divisualisasikan sebagai rotasi dan pemanjangan secara bersamaan.
Perkalian dengan i adalah rotasi 90 derajat berlawanan dengan arah jarum jam (π / 2 radian). Secara geometris, persamaan i2 = −1 adalah dua kali rotasi 90 derajat yang sama dengan rotasi 180 derajat (π radian).

Tidak ada komentar:

Posting Komentar